ICT167 Principles of Computer Science

Assighment 1

Jin Cherng Chong
33170193

Murdoch University

W 17167 Principls of Computer Scence (2, 2020

0 ASSGNUETL - %0 000 0% Documentatoniswel sructued, Use of exramethodsheve een usfied
SUBMISSION trmel documentatio or dedaraton and construcors an he g,

Valdaion formenu aptons ae required

Addig more o anexising person s been dane sing a separate mefhod.Howeve thesucentjustfes thtauser may want t overre he
amountnsead o addingParel marks have been ghen

Table of content

Title: p3

Requirements/Specification: p3 — p5
User guide: p5 — p8
Structure/Design/Algorithm: p8 — p26
Limitations: p27

Testing: p28 — p45

Source program listings: p46 — p67

Introduction

This documentation represents the external documentation for Jin Cherng Chong ICT167 Assignment
1 program. The document outlines the planning, constructing, and testing that went into the
development of the program. The files that are referenced throughout the documentation include-
Client.java and Change.java

Change.java contains the change class while client.java contains the client program. This
documentation is for version: 0.01 which is the latest version as of 4/09/2020. This program is a
money changer program where money given by a person (referred to as the change amount) is
exchanged for the equivalent coin amount. The program is called change machine.

Requirements/Specifications

This money changer program records the amount of money a person has given and returns the same
amount of money but in coins. The attribute “amountOfChange” represents the change amount a
person has given. While the attributes- “numOfFiftyCents”, “numOfTwentyCents”, “numOfTenCents
and “numOfFiveCents” represent the different possible coin values the amountOfChange can be
divided up into. A systematic approach is utilised when the amount of money given by a person is
exchanged for coins. The larger valued coins will be given out first to reduce the total amount of
coins given. So for example if a person gives 100 cents the program will return the change consisting
of 2x 50 cent coins and not 10x 10 cent coins. Every person will have a unique identifiable name. So
if a repeated name is entered then the associated amountOfChange is added to the existing entered

amountOfChange.

”

The assumptions for the program include-

e Assume the amount of money a person gives (amountOfChange) will be in cents only
e Assume user will input first name of a person only and it is only a one string first name. This
entry excludes the person’s middle name and last name
e Assume user will input data of the correct data type
e Assume the user doesn’t name a person: “None”
e Assume every person has a unique identifiable name. Therefore, no two people will have the
same name
e Assume the currency is AUD
e Assume that there is no GST involved
e Assume the user will have no preference in what coin he wants. For example- the client
doesn’t demand change be In 50 cent coins only
e Assume the question “Do you have more person to enter” is only outputted when a new
person is entered. So the question will not show when a user enters an existing person again
Class Attributes Responsibilities Operations
Change name Receive name of user + SetName()
amountOfChange Validate name of user
numOfFiftyCents
numOfTwentyCents Receive change amount
numOfTenCents Validate change amount + SetAmountOfChange()
numOfFiveCents
Receive change amount and add
to existing total change amount + AddAmountOfChange()
for an existing person
Receive number of coins for + SetNumOfFiftyCents()
different coin value types +SetNumOfTwentyCents()
s + SetNumOfTenCents()

Return name of user to client

Return to client the number of
fifty cent coins given to a user

Return to client the number of
twenty cent coins given to a user

Return to client the number of
ten cent coins given to a user

Return to client the number of
five cent coins given to a user

Returns to the client the initial
(unset) instance variables of the
object

+ SetNumOfFiveCents()

+ GetName()

+ GetNumOfFiftyCents()

+ GetNumOfTwentyCents()

+ GetNumOfTenCents()

+ GetNumOfFiveCents()

+ WritelnitialRecord()

Class

Responsibilities

Operations

Client

Input name of user

Input change amount of user

+ Main()

Calculate the denominations of coin
change amount for a user

Check whether another person
should be added

Check same name

Display Menu

Process menu options

Display total coins given for each
denomination

+ CalculateDenominations()

+ ValidateAddAnotherPerson()

+ ChkIsNewName()

+ DspMenu()

+ SelectOption1()
+ SelectOption2()
+ SelectOption3()
+ SelectOption4()

+DenominationsBreakdown()
+ DspDenominations()

User Guide

Option 1- Run with jar

Step 1:

e Extract the Change folder to desktop

Step 2:

e Open up command prompt
e Go to change directory
o Command: Cd [Change folder]

BN Command Prompt

oft Winc

Step 3:

e Go to dist directory

o Command: Cd [dist folder]

Step 4:

Once in: Change/dist = Execute the Change.jar
o Command: java -jar Change.jar

C:\Users\Admin\Desktop\Change\dist>java -jar
lame: Jin Cherng Chong

'Student number: 33 3

Mode of enrolment: Internal

_Tutorial attendance day and time: Thursday 3:

The current default records for a person is
Name: MNone
Change amount: @

Change:
50 cents:
cents:
=10 cents:
5 cents: ©
Please enter the name of the person:

Step 5: Well done! You can now type away in the command prompt

Option 2- Running with Netbean

Step 1:

SSS

e Open project through netbean

o File & Open project = Click on project = Open project

2 @ Open Project
Look in: Lesar (D)

. . -

= —
Recent ftems ___;.g

i ICT286 Lectures
@ & | Frojectfi4 2.3
I ROM
Desktop T
Documents
2
This PC

Network

Step 2:

e Run project

ICT 286 Database

Lé File name: D:\Change
Files of type: Project Folder

3

Froject Name:
Change

Open Required Projects:

Cpen Project

w Cancel

o Click run = Click Run Project (Change)

Step 3: Well done! You can now type away in the console in netbean

L

Output - Change (run) > |
Name: Jin Cherng Chong
Student number: 23170153

D HMode of enrolment: Internal
%é Tutorial attendance day and time: Thursday 3:30pm

Hame: None

Change amount: 0

Change:

50 cents: O
20 cents: 0
10 cents: 0O
5 cents: O

Structure/Design/Algorithm

Additional method for Change class-

The current default records for a person is

Please enter the name of the person:

Methods

Justification

WritelnitialOutput()

This method is called upon by the client
program in order to get the initial variable
values of the objects. This displayed at the
start of the program in order to inform
the client about the default values. These

default values can be used as part of input
validation

AddAmountOfChange(newAmountOfChange) | This method takes in an integer
parameter of newAmountOfChange. The
method is used to add the current total
change amount requested by a person
with the newAmountOfChange. This
result would provide the person with an
updated AmountOfChange total. Needed
for objects that have already set their
initial amountOfChange and we want add
some more change. Using a
setAmountOfChange() method would not
be correct since sometimes we want to
have the total change amount outside the
acceptable range

Low level algorithm for client program-

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3k 3k 3k %k %k %k 3k 5k 3k %k >k >k 5k 5k 3k >k %k >k 5k 5k 3k %k %k >k 5k 3k 3k k >k 3k 3k 3k %k %k %k 3k 3k 3k %k %k %k 3%k 3k 3k %k %k >k 3%k 3k 3k %k %k 5%k 3k 3k %k %k %k %k 5k %k %k k *k

Change Machine Client Program Algorithm
By: Jin Cherng Chong

This program illustrates the process in which money given by a person (refered to as the
change amount) 1is exchanged for the equivialent coin amount

Assumptions for the input and output are-
Assume the amount of money a user gives (amountOfChange) will be in cents only

Assume the user will input the first name of a person only as a single string. This entry
excludes the person's middle name and last name

Assume user will input data of the correct data type
Assume that there is no GST attached to the exchange

Assume every person has a unique identifable name. Therefore, no two people will have same
name

Assume the user doesn't name a person: "None"

3k 3k 3k 3k 3k sk sk %k 3k 3k sk sk sk 3k 3k 3k sk sk sk sk 3k sk sk sk sk 3k ok sk sk sk sk sk ok sk sk sk sk sk 5k sk sk sk sk 5k sk sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k sk sk 3k 3k ok 3k sk sk 3k ok ok sk sk sk >k ok sk sk sk k ok

Procedure void Main ()

String userName
String currentUserName
Integer changeQuantity = 0

Integer currentQuantityOfChange = 0

Character addAnotherPerson = 'Y'

Boolean invalidInput = true

Change[] person = new Change[l5]

for Integer i = 0 To (i < 15) Do
Person[i] = new Person()

EndFor

Output "The current default records for a person is"

WriteInitialRecord (Person[0])

for Integer i = 0 To ((i < 15) AND (addAnotherPerson == 'Y')) Do

Output "Please enter the name of the person:

Input userName

Output "Please enter the coin value for the person (range 5 to 95,
multiple of 5): "

Input changeQuantity

newName = ChkIsNewName (userName, changeQuantity, person)

if (newName) then
SetName (Person[i], userName)
SetAmountOfChange (Person[i], changeQuantity)

EndIf

currentUserName = GetName (Person[i])

currentQuantityOfChange = GetAmountOfChange (Person[i])

while ((currentUserName == 'None') OR (currentQuantityOfChange == 0))

Output "Do you have more person to enter (Y/N):
Input addAnotherPerson

invalidInput = true

ValidateAddAnotherPerson (addAnotherPerson)

if (ToUpperCase (addAnotherPerson) == 'Y') then

invalidInput = false

addAnotherPerson = 'Y'

EndIf

if (ToUpperCase (addAnotherPerson) == 'N') then
invalidInput = false
addAnotherPerson = 'Y'

EndIf

while (invalidInput)

EndFor

CalculateDenominations (person)

//Method to call hardcoded data here

DspMenu (person)

EndProcedure

Procedure Boolean ChkIsNewName (String chkUserName, Integer changeAmount,

String personName = 'None'

for Integer i = 0 To (i < 15) Do

personName = GetName (Person[i])

if (personName equals chkUserName) then

AddAmountOfChange (Person[i], changeAmount)

Output "Updates existing person"

return false

EndIf

Person)

EndFor

return true

EndProcedure

Procedure void ValidateAddAnotherPerson (Character chkAddAnotherPerson)

if ((chkAddAnotherPerson !== Y) OR (chkAddAnotherPerson !== N)) then
return
else
Output "Error: Invalid input"

EndIf

EndProcedure

Procedure void CalculateDenominations (person)

for Integer i = 0 To (i < 15) Do
Integer remainingAmountOfChange = 0
Integer numOfFiftyCents = 0
Integer numOfTwentyCents = 0
Integer numOfTenCents = 0
Integer numOfFiveCents = 0

remainingAmountOfChange = GetAmountOfChange (Person[i])

while (remainingAmountOfChange >= 50) then
numOfFiftyCents += 1
remainingAmountOfChange -= 50

EndWhile

while (remainingAmountOfChange >= 20) then
numOfTwentyCents += 1
remainingAmountOfChange -= 20

EndWhile

while (remainingAmountOfChange >= 10) then

numOfTenCents += 1
remainingAmountOfChange -= 10

EndWhile

while (remainingAmountOfChange >= 5) then
numOfFiveCents += 1
remainingAmountOfChange -= 5

EndWhile

SetNumOfFiftyCents (Person[i], numOfFiftyCents)
SetNumOfTwentyCents (Person[i], numOfTwentyCents)
SetNumOfTenCents (Person[i], numOfTenCents)

SetNumOfFiveCents (Person[i], numOfFiveCents)

EndFor

EndProcedure

Procedure void DspMenu (person)

Integer option = 0

while (option != 5) then

Output "1. Enter a name and display change to be given for each denomination"

Output "2. Find the name(s) with the smallest amount and display change to be
given for each denomination"

Output "3. Find the name(s) with the largest amount and display change to be
given for each denomination"

Output "4. Calculate and display the total number of coins for each
denomination, and the sum of these totals"

Output "5. Exit"

Output "Enter an option: "

Input option

Switch (option)
Case 1:
SelectOptionl (person)

Case 2:

SelectOption?2 (person)

Case 3:
SelectOption3 (person)
Case 4:
SelectOptiond (person)
Case 5:
Output "Farewell! Exiting menu"
default:

Output "Invalid option!"

EndCase

EndWhile

EndProcedure

Procedure void SelectOptionl (person)

String searchName
String currentName

Boolean nameNotFound = True

Output "-—-——— =
do

Output "Enter a name"

Input searchName
while (searchName is Empty AND searchName != null)

for Integer i = 0 To ((i < 15) AND (nameNotFound)) Do

currentName = GetName (Person[i])

if (searchName equals currentName) then

DenominationsBreakdown (i, person)

nameNotFound = false

EndIf

EndFor

if (nameNotFound) then

Output "Name: " + searchName
Output "Not found"
OULPUL Mo m e

EndIf

EndProcedure

Procedure void SelectOption?2 (person)

Integer smallestNumLocaton = 0

Integer smallestChangeAmount = GetAmountOfChange (Person[0])

Integer changeAmount = 0

for Integer i = 0 To (i < 15) Do

changeAmount = GetAmountOfChange (Person[i])

if ((changeAmount < smallestChangeAmount) AND (changeAmount !== 0)) then

smallestChangeAmount = changeAmount

EndIf

EndFor

Output "

Output "The people(s) with the smallest change amount is"

for Integer j = 0 To (j < 15) Do

changeAmount = GetAmountOfChange (Person[j])
if (smallestChangeAmount == changeAmount) then
smallestNumLocation = j
DenominationsBreakdown (smallestNumLocation, person)
EndIf

EndDo

EndProcedure

Procedure void SelectOption3 (person)

Integer largestNumLocaton = 0

Integer largestChangeAmount = GetAmountOfChange (Person[0])

Integer changeAmount = 0

for Integer i = 0 To (i < 15) Do

changeAmount = GetAmountOfChange (Person[i])

if (changeAmount > largestChangeAmount) then

largestChangeAmount = changeAmount

EndIf

EndFor

Output "-———=——— "

Output "The people with the largest change amount requested is"

for Integer j = 0 To (j < 15) Do

changeAmount = GetAmountOfChange (Person[j])

if (largestChangeAmount == changeAmount) then
largestNumLocation = j

DenominationsBreakdown (largestNumLocation, person)
EndIf

EndDo

EndProcedure

Procedure void SelectOption4 (person)

Integer TotalFiftyCents = 0
Integer TotalTwentyCents = 0
Integer TotalTenCents = 0

Integer TotalFiveCents = 0

Integer TotalAmountOfChange = 0

for Integer i = 0 To (i < 15) Do

Integer fiftyCents = GetNumOfFiftyCents (Person[i])
Integer twentyCents = GetNumOfTwentyCents (Person[i])
Integer tenCents = GetNumOfTenCents (Person[i])
Integer fiveCents = GetNumOfFiveCents (Person[i])

Integer amountOfChange = GetAmountOfChange (Person([i])

TotalFiftyCents += fiftyCents
TotalTwentyCents += twentyCents
TotalTenCents += tenCents

TotalFiveCents += fiveCents

TotalAmountOfChange += amountOfChange

EndFor

Output "Total number of coins and sum of these total”
Output "Total amount of change: " + TotalAmountOfChange

dspDenominations (TotalFiftyCents, TotalTwentyCents, TotalTenCents, TotalFiveCents)

EndProcedure

Procedure void DenominationsBreakdown (Integer location, person)

String dspName

Integer numOfFiftyCents = 0
Integer numOfTwentyCents = 0
Integer numOfTenCents = 0
Integer numOfFiveCents = 0

Integer dspChangeAmount = 0

numOfFiftyCents = GetNumOfFiftyCents (Person[location])

numOfTwentyCents = GetNumOfTwentyCents (Person[location])

numOfTenCents = GetNumOfTenCents (Person[location])
numOfFiveCents = GetNumOfFiveCents (Person[location])
dspChangeAmount = GetAmountOfChange (Person[location])

dspName = GetName (Person[location]) //Retrieves the name of the person

Output "Customer: "

Output dspName + dspChangeAmount + "cents"

dspDenominations (numOfFiftyCents, numOfTwentyCents, numOfTenCents, numOfFiveCents)

EndProcedure

Procedure void DspDenominations (Integer dspNumOfFiftyCents, Integer dspNumOfTwentyCents,
Integer dspNumOfTenCents, Integer dspNumOfFiveCents)

Output "Change: "

if (dspNumOfFiftyCents !== 0) then

Output "50 cents: " + dspNumOfFiftyCents
EndIf
if (dspNumOfTwentyCents !== 0) then

Output "20 cents: " + dspNumOfTwentyCents
EndIf
if (dspNumOfTenCents !== 0) then

Output "10 cents: " + dspNumOfTenCents
EndIf
if (dspNumOfFiveCents !== 0) then

Output "5 cents: " + dspNumOfFiveCents
EndIf
Output "--- - - "

EndProcedure

Low level algorithm for change class-

private
private
private
private
private

private

String name

Integer
Integer
Integer
Integer

Integer

amountOfChange
numOfFiftyCents
numOfTwentyCents
numOfTenCents

numOfFiveCents

Procedure Change ()

name = "None"

amountOfChange = 0

numOfFiftyCents = 0

numOfTwentyCents = 0

numOfTenCents = 0

numOfFiveCents = 0

EndProcedure

Procedure Change (String initialName,

InitialName

name =

amountOfChange =

numOfFiftyCents = 0

numOfTwentyCents = 0

numOfTenCents = 0

numOfFiveCents = 0

EndProcedure

Procedure Change (string initialName)

SetName (initialName)
amountOfChange = 0
numOfFiftyCents = 0
numOfTwentyCents = 0
numOfTenCents = 0

numOfFiveCents = 0

EndProcedure

Integer initialAmountOfChange)

initialAmountOfChange

Procedure Change (Integer initialAmountOfChange)

name = "None"

amountOfChange =
numOfFiftyCents = 0
numOfTwentyCents = 0

numOfTenCents = 0

numOfFiveCents = 0

initialAmountOfChange

EndProcedure

Procedure void SetChange (String newName, Integer newAmountOfChange)

SetName (newName)

SetAmountOfChange (newAmountOfChange)
numOfFiftyCents = 0
numOfTwentyCents = 0

numOfTenCents = 0

numOfFiveCents = 0

EndProcedure

Procedure void SetName (String newName)

if (!newName is Empty AND newName != null) then
name = newName
else
Output "Error: Invalid name"

EndIf

EndProcedure

Procedure void SetAmountOfChange (Integer newAmountOfChange)

Boolean inRange = ((newAmountOfChange >= 5 AND newAmountOfChange <= 95)

Boolean multipleOfFive = (newAmountOfChange is MultipleOf 5)

if (inRange And multiplefFive) then
amountOfChange = newAmountOfChange
else

Output "Incorrect coin value. Must be in the range 5 to 95, and
multiple of 5."

EndIf
EndIf

EndIf

EndProcedure

Procedure void AddAmountOfChange (Integer newAmountOfChange)

Boolean inRange = ((newAmountOfChange >= 5 AND newAmountOfChange <= 95)

Boolean multipleOfFive = (newAmountOfChange is MultipleOf 5)

if (inRange And multiplefFive) then

amountOfChange += newAmountOfChange

else
Output "Incorrect coin value. Must be in the range 5 to 95, and
multiple of 5."
EndIf
EndIf
EndIf
EndProcedure

Procedure void SetNumOfFiftyCents (Integer newNumOfFiftyCents)

numOfFiftyCents = newNumOfFiftyCents

EndProcedure

Procedure void SetNumOfTwentyCents (Integer newNumOfTwentyCents)

numOfTwentyCents = newNumOfTwentyCents

EndProcedure

Procedure void SetNumOfTenCents (Integer newNumOfTenCents)

numOfTenCents = newNumOfTenCents

EndProcedure

Procedure void SetNumOfFiveCents (Integer newNumOfFiveCents)

numOfFiveCents = newNumOfFiveCents

EndProcedure

Procedure void WriteInitialRecord()

Output "Name: " + name

Output "Change amount: " + amountOfChange

Output "Change: "

Output "50 cents: " + numOfFiftyCents

Output "20 cents: " + numOfTwentyCents

Output "10 cents: " + numOfTenCents

Output "5 cents: " + numOfFiveCents
EndProcedure

Procedure String GetName ()
return name

EndProcedure

Procedure Integer GetAmountOfChange ()
return amountOfChange

EndProcedure

Procedure Integer GetNumOfFiftyCents ()
return numOfFiftyCents

EndProcedure

Procedure Integer GetNumOfTwentyCents ()
return numOfTwentyCents

EndProcedure

Procedure Integer GetNumOfTenCents ()
return numOfTenCents

EndProcedure

Procedure Integer GetNumOfFiveCents (
return numOfFiveCents

EndProcedure

High level algorithm for client program-

Start

Input the name of person

Validate the name of person

Input the coin value for the person

Validate the coin value

Check whether another person needs to be entered
Calculate denominations for all people
Display menu

Input option for menu

Process option

Check whether another option needs processed

End

UML diagram for Change class and client program-

Change

- mame: String

- amountCHChange: int

- numOiFiftyCents: int

- numOf TwentyCents! int
- numOiTenCents: in

- numC¥Fve Cents: int

I+ SetChange{Sitring newlame, int newAmountfChange]: woid
+ Sethame{Siring newMame): void

+ SetAmountfChange(int newAmountfChange): void

[+ AddAmouniOfChange!int newAmountCHChange): void

I+ SetNumOiFiyCentsmt newNumOiFiftyCents): voud

+ SethNumOiTwentyCenta(int newhiumOfTwantyCants): void
+ SetNumOdTenCants(int newkumd{{TenCants): void

|+ SethNumCtFneCentsdint newNumOtFiveCents): vind

|+ GatMamad{): Siring

+ GetAmourt{iChangs(}: int

+ GetNumOtFittyCentsd}: int

|+ GethMumOfTwentyCents(): mt

l+ GethumOf TenCants(): int

+ GisthumOFiveCentsd)- int

+ WiilelnbhalRecord|}: voud

Client

-+ Mbaani) woud

I+ ChiktsMewMame{Sirng chiUseriame, int changeAmount, Change[] person): bookean
|+ WalidateAddAnotherPersonichar chkAddAnotherPerson): woid

I+ CalculaieDenominabons{Change|] person): void

+ DaphMenu{Changs]] person}: wvoid

I+ BalectOption 1| Change(] person): void

I+ BalectOption?| Change(] person): void

I+ SelectDplion3| Change[] person): void

+ SelectOptiond| Change(] parsan): waid

+ DenominationsBreskdown|in location, Change(] pereon): viokd

I+ DspDenomingsons{int dsphumOiFittyCents, int depNumOiTwentyCents, int dephlumOfTenCents, int depMumOiFiveCents): voad

Structure chart for client program- (zoom to view clearer)

Main()

(ChklsNewName(chkUserName, changeAmount, person)

ValidateAddAnotherPerson(chkAddAnotherPersan) CalculateDenominations(person) DspMenu(person)
SelectOption1(person) SelectOption2(persan) BelectOption3(person) BelectOptiond{person)
DspDenominationsidspNumOfFiftyCents,
DenominationBreakdown location persan) o) dsohumOMwentyCents,
e BEe spHumOTenCents, dsphumOFiveCents)
DapDenominations(dsphumOIFyCants, | | o e o NomENF iyt DepDenominations{dspNumO1FiftyCents,
CApNNC fwanivCients, dspMamOfuentyGents dspNumOITwentyGents
dephumCiTanGents, dsphlumOTFiveCents) | | o umOrmenCents, dspNumOFiveCents) | |dsphumOTenGents, dspNumOFNeCents)

Limitations

One of the issues with my program was that | had to have an additional method in the change class
to add more change amount to an existing person (AddChangeAmount). So instead of having one
method (SetAmountOfChange) to handle the change amount for a person | needed an additional
method (AddChangeAmount). | tried to implement the addChangeAmount method to the
setAmountOfChange but there are instances where a user would like to just override the current
change amount for a person and set a new change amount for the person. So it would be difficult for
the program to differentiate adding more change to a person and setting a brand new change for a
person. Thus, two methods were required.

Another issue with my program is that an assumption had to be made for the name of a person. The
program assumed that the user would enter the name of a person as one string. If a user
accidentally entered a name of a person as one string but with a space at the end (Lucas) the
program would still accept and store the input. If the client typed (Lucas) without a space to search
the name the program would return not found. Thus, the assumption that the names have to be one
string was made to combat this.

The third issue with my program is that a strings starting with the letter Y or N entered in response
to the question “Do you have more person to enter (Y/N)” is always treated as valid response. The
program should really only accept the character Y or N and not a string with the first letter Y or N.
This failure has to do with the way in which the program accepts the character input;
keyboard.next().charAt(0) is used to obtain the character input. As a result of this method a string
will always be accepted but only the first character of that string. Unfortunately | was unable to
identify another method to obtain a single character input

Testing

Testing was divided in several parts. These parts include- option 1 menu, option 2 menu, option 3
menu, option 4 menu, option 5 menu, option menu itself, and user inputting details of a person. Test
table: user inputs person details contains the only failures that arose during the testing. In that test
table, TestCase 13-15 were all failed. Refer to the limitations section for an explanation.

Test Table: Option 1 (Enter a name and display change to be given for each denomination)

Test # Test description Inputs Expected outputs | Success/Failure
1 Enters a name wrong josh Name: joshi Success
95 Not Found
y
tim
45
y
rock
5
n
1
joshi
2 Enters a correct name. josh Customer: Success
95 tim 45 cents
y
Change:
tim 20 cents: 2
45 5cents: 1
y
rock
5
n
1
tim
3 Enters a correct name josh Customer: Success
but in different cases 95 rock 5 cents
y
Change:
tim 5cents: 1
45
y

rock

rOckK

4 Enter an empty name (same input as above
but with the addition of
empty name instead if
rOcK)

Enter a name:

Enter a name:

Success

5 Enters a correct name jOsh
but the input is in 20
different cases y

tim
30
Y

josh

Customer:
jOsh 20 cents

Change:
20 cents: 1

Success

6 Enters a correct name kelly
but the input contains 45
same person Y

Thomas
75

Y

kelly
95

Josh
20

kelly

Customer:
Kelly 140 cents

Change:
50 cents: 2
20 cents: 2

Success

Result of programing testing

TestCase 1:

Enter a name:

joshi

Name: joshi

Not Found

TestCase 2:

Enter a name:

tim

Customer:

tim 45 cents

Change:
20 cents: 2

Scents: 1

TestCase 3:

Enter a name:

rOcK

Customer:

rock 5 cents

Change:

S5cents: 1

TestCase 4:

Enter a name:

Enter a name:

TestCase 5:

Enter a name:

josh

Customer:

jOsh 20 cents

Change:

20 cents: 1

TestCase 6:

Enter a name:

Kelly

Customer:

kelly 140 cents

Change:
50 cents: 2

20 cents: 2

Test Table: Option 2 (Find the name(s) with the smallest change amount and display change given

for each denomination)

Test # Test description Inputs Expected outputs | Success/Failure
1 User enters Tony Customer: Success
multiple people 35 tony 35 cents
with the smallest | Y
change amount Change:
Shaw 20 cents: 1
35 10 cents: 1
Y 5cents: 1
Rioli
55
N Customer:
shaw 35 cents
2
Change:
20 cents: 1
10 cents: 1
5cents: 1
2 User enters Bob Customer: Success
person with the 10 Tom 5 cents
smallest change | Y
amount. But Change:
enters change Tom 5cents: 1
amount incorrect | 5
for one of the Y
people
Lewis
7
Lewis
15
N

3 User enters Lewie Customer: Success
person with the 6 Tom 10 cents
smallest change
amount George Change:
incorrectly the 15 10 cents: 1
first time. But
correctly the Lewie
subsequent time | 10

N
2

4 User enters Lucas Customer: Success
person with 20 Lucas 40 cents
smallest change | Y
amount by Change:
entering the Lucas 10 cents: 1
person twice 20

Lewie
60

N

2

5 User enters LuCas Customer: Success
person with 20 LuCas 60 cents
smallest change | Y
amount by Change:
entering the Lucas 50 cents: 1
person twice but | 40 10 cents: 1
the names in
different cases Ron

70
N
2

Result of programing testing

TestCase 1:

The people(s) with the smallest change amount is

Customer:

tony 35 cents

Change:
20 cents: 1
10cents: 1

Scents: 1

Customer:

shaw 35 cents

Change:
20 cents: 1
10cents: 1

Scents: 1

TestCase 2:

The people(s) with the smallest change amount is

Customer:

Tom 5 cents

Change:

5cents: 1

TestCase 3:

The people(s) with the smallest change amount is

Customer:

Lewie 10 cents

Change:

10cents: 1

TestCase 4:

The people(s) with the smallest change amount is

Customer:

Lucas 40 cents

Change:

20 cents: 2

TestCase 5:

The people(s) with the smallest change amount is

Customer:

LuCas 60 cents

Change:
50 cents: 1

10cents: 1

Test Table: Option 3 (Find the hame(s) with the largest change amount and display change given for

each denomination)

Test # Test description Inputs Expected outputs | Success/Failure
1 User enters Matt Customer: Success
person with 40 Matt 135 cents
largest change Y
amount by Change:
entering the Matt 50 cents: 2
person twice 95 20 cents: 1
10 cents: 1
George 5cents: 1
95
N
3
2 User enters Matt Customer: Success
multiple people 95 Matt 95 cents
with the largest Y
change amount Change:
George 50 cents: 1
95 20 cents: 2
N 10 cents: 1

Customer:
George 95 cents

Change:

50 cents: 1
20 cents: 2
10 cents: 1

Result of programing testing

TestCase 1:

The people(s) with the largest change amount is

Customer:

Matt 135 cents

Change:

50 cents: 2
20 cents: 1
10cents: 1

5cents: 1

TestCase 2:

The people(s) with the largest change amount is

Customer:

Matt 95 cents

Change:
50 cents: 1
20 cents: 2

S5cents: 1

Customer:

George 95 cents

Change:
50 cents: 1
20 cents: 2

S5cents: 1

Test Table: Option 4 (Calculate and display the total number of coins for each denomination, and the

sum of these totals)

Test # Test description Inputs Expected outputs | Success/Failure
1 User enters Arc Total amount of | Success
people with the 10 change: 20
same change Y
amount Change:
Bob 10 cents: 2
10
N
4
2 [llustrates all Floyd Total amount of | Success
denominations 5 change: 85
are working for Y
option 4 Change:
Rob 50 cents: 1
10 20 cents: 1
Y 10 cents: 1
5cents: 1
Dunk
20
Y
Leroy
50
N
4

Result of programing testing

TestCase 1:

Total number of coins and sum of these total

Total amount of change: 20

Change:

10 cents: 2

TestCase 2:

Total number of coins and sum of these total

Total amount of change: 85

Change:

50 cents: 1
20 cents: 1
10cents: 1

5cents: 1

Test Table: Option 5 (Exit)

Test # Test description Inputs Expected outputs | Success/Failure
1 User select Ron Farewell! Exiting | Success
option 5 5 menu
Y
5

Result of programing testing

TestCase 1:

Farewell! Exiting menu

Test Table: Option menu input

Test # Test description Inputs Expected outputs | Success/Failure
1 User enters non- | bob Invalid option! Success
valid entry for 5
option menu n
1234

Result of programing testing

TestCase 1:

Enter an option:
1234

Invalid option!

Test Table: User inputs person details

Test # Test description Inputs Expected outputs | Success/Failure
1 User inputs the Bob Customer: Success
lowest valid 5 Bob 5 cents
change amount N
for a person Change:
1 5cents: 1
Bob
2 User inputs non- | Bob Incorrect coin Success
multiple of 5 6 value. Must be in
change amount range between 5
for a person to 95 and
multiple of 5
3 User inputs the Tom Customer: Success
highest valid 95 Tom 95 cents
change amount N
for a person Change:
1 50 cents: 1
Tom 20 cents: 2
5cents: 1
4 User inputs a Jin Incorrect coin Success
multiple of 5 100 value. Must be in
change amount range between 5
for a person but to 95 and
outside the multiple of 5
maximum valid
change amount
range
5 User inputs a Jin Incorrect coin Success
multiple of 5 -5 value. Must be in
change amount range between 5
for a person but to 95 and
outside the multiple of 5
minimum valid
change amount
range
6 User inputs Lucas Incorrect coin Success
change amount -20 value. Must be in

for a person as
negative

range between 5
to 95 and

multiple of 5

7 User inputs zero | Felix Incorrect coin Success
change amount 0 value. Must be in
for a person range between 5
to 95 and
multiple of 5
8 User input empty | 100 Error: Invalid Success
string for name name
of person and Incorrect coin
invalid change value. Must be in
amount range between 5
to 95 and
multiple of 5
9 User enters Bob Please enter the | Success
lowercase and 5 name of the
uppercase Y for y person:
whether another
person should be | Tim
added 5
Y
10 User enters Bob Enter an option: Success
lowercase N for 5
whether another | n
person should be
added
11 User enters Tim Enter an option: Success
uppercase Nfor |5
whether another | N
person should be
added
12 User enters a non | Bob Error: invalid Success
Y or N input for 5 input
whether another | asdf
person should be
added
13 User enters a non | Bob Error: invalid Failure
Y or N input for 5 input
whether another | yess
person should be
added butinput | Tom
starts with letter | 5
Y uppercase or Yep
lowercase
14 User enters a non | Bob Error: invalid Failure
Y or N input for 5 input
whether another | NewPerson

person should be
added but input

starts with letter
N uppercase

15 User enters a non
Y or N input for
whether another
person should be
added but input
starts with letter
n lowercase

mitch

no

Error: invalid
input

Failure

Result of programing testing

TestCase 1:

Enter a name:

Bob

Customer:

Bob 5 cents

Change:

5cents: 1

TestCase 2:

Please enter the name of the person:

Bob

Please enter the coin value for the person (range 5 to 95, multiple of 5:

6

Incorrect coin value. Must be in range between 5 to 95 and multiple of 5

TestCase 3:

Enter a name:

Tom

Customer:

Tom 95 cents

Change:
50 cents: 1
20 cents: 2

Scents: 1

TestCase 4:

Please enter the name of the person:

Jin

Please enter the coin value for the person (range 5 to 95, multiple of 5:
100

Incorrect coin value. Must be in range between 5 to 95 and multiple of 5

TestCase 5:

Please enter the name of the person:

Jin

Please enter the coin value for the person (range 5 to 95, multiple of 5:
-5

Incorrect coin value. Must be in range between 5 to 95 and multiple of 5

TestCase 6:

Please enter the name of the person:

Lucas

Please enter the coin value for the person (range 5 to 95, multiple of 5:
-20

Incorrect coin value. Must be in range between 5 to 95 and multiple of 5

TestCase 7:

Please enter the name of the person:
Felix

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Incorrect coin value. Must be in range between 5 to 95 and multiple of 5

TestCase 8:

Please enter the name of the person:

Please enter the coin value for the person (range 5 to 95, multiple of 5:
100
Error: Invalid name

Incorrect coin value. Must be in range between 5 to 95 and multiple of 5

TestCase 9:

Please enter the name of the person:
Bob

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):

Please enter the name of the person:
Tim

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):

Please enter the name of the person:

TestCase 10:

Please enter the name of the person:
Bob

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):

1. Enter a name and display change to be given for each denomination

2. Find the name(s) with the smallest amount and display change to be given for each denomination
3. Find the name(s) with the largest amount and display change to be given for each denomination

4. Calculate and display the total number of coins for each denomination, and the sum of these totals
5. Exit

Enter an option:

TestCase 11:

Please enter the name of the person:
Tim

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):

N

1. Enter a name and display change to be given for each denomination

2. Find the name(s) with the smallest amount and display change to be given for each denomination
3. Find the name(s) with the largest amount and display change to be given for each denomination

4. Calculate and display the total number of coins for each denomination, and the sum of these totals
5. Exit

Enter an option:

TestCase 12:

Please enter the name of the person:
Bob

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):
asdf

Error: invalid input

TestCase 13:

Please enter the name of the person:
Bob

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):
yess

Please enter the name of the person:
Tom

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):
Yep

Please enter the name of the person:

TestCase 14:

Please enter the name of the person:
Bob

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):

NewPerson

1. Enter a name and display change to be given for each denomination

2. Find the name(s) with the smallest amount and display change to be given for each denomination
3. Find the name(s) with the largest amount and display change to be given for each denomination

4. Calculate and display the total number of coins for each denomination, and the sum of these totals
5. Exit

Enter an option:

TestCase 15:

Please enter the name of the person:
mitch

Please enter the coin value for the person (range 5 to 95, multiple of 5:

Do you have more person to enter (Y/N):

no

1. Enter a name and display change to be given for each denomination

2. Find the name(s) with the smallest amount and display change to be given for each denomination
3. Find the name(s) with the largest amount and display change to be given for each denomination

4. Calculate and display the total number of coins for each denomination, and the sum of these totals
5. Exit

Enter an option:

Source program listing

Java source code for client program (Client.java)-

/*
* Change Machine

* By: Jin Cherng Chong

* 4/09/2020

* Files: Client.java and Change.java (class name)

* This program illustrates the process in which money given by a person (referred to as the
change amount) is exchanged for the equivalent coin amount

* Assumptions for the inputs and outputs are-
* Assume the amount of money a person gives (change amount) will be in cents only

* Assume the user will input the first name of a person only as a single string. This entry
excludes the person's middle name and last name

* Assume the user will input data of the correct data type
* Assume there is no GST involved

* Assume every person has a unique identifiable name. Therefore, no two people will have the
same name

* Assunme the user doesn't name a person: "None"
*/

package change;

import java.util.Scanner;

public class Client {

public static void main(String[] args) {

String userName;

String currentUserName;

int changeQuantity = 0;

int currentQuantityOfChange = 0;
char addAnotherPerson = 'Y';

boolean invalidInput = true;

Scanner keyboard = new Scanner (System.in);

Change[] person = new Change[l5]; //Creates an array of new objects. Each object can
be thought of as a unigque person

for (int 1 = 0; 1 < 15; i++) { //Instantiates the new objects

person[i] = new Change();

StudentInfo () ;

System.out.println ("The current default records for a person is");

person[0] .WriteInitialRecord(); //Displays curent instance variables for the object
//HardcodeData () ; //Remove the front // to enable hard coded data
for (int 1 = 0; (i < 15) && (addAnotherPerson == 'Y'); i++) //Loops through the whole

array of persons (object) and makes sure addAnotherPerson is 'Y' which indicates: Yes, we need
to add another person

{

do {

System.out.println ("Please enter the name of the person:");

userName = keyboard.nextLine(); //User inputs the name of person

System.out.println ("Please enter the coin value for the person (range 5 to 95,
multiple of 5:");

changeQuantity = keyboard.nextInt(); //User inputs the amount of money to be
given (called change amount because it will be exchanged for coins)

boolean newName = ChkIsNewName (userName, changeQuantity, person); //Check
whether name is unique thus indicating a new person (object)

if (newName) { // This is true when a user enters a unique name which
indicates a new person (object)

person[i].SetName (userName); //Set a unique/new name for the person
(object)

person[i].SetAmountOfChange (changeQuantity); //Set the change amount for
the person

currentUserName = person[i].GetName () ;

currentQuantityOfChange = person[i].GetAmountOfChange () ;

keyboard.nextLine(); //This fixes the nextLine common issue where the /n is
part of buffer

} while ((currentUserName.equals ("None")) || (currentQuantityOfChange == 0));
//Validates whether or not the name of the person and change amount for the person is actually
entered correctly by the user

do {
System.out.println("Do you have more person to enter (Y/N):");
addAnotherPerson = keyboard.next () .charAt (0);
char addAnotherPersonUpper = Character.toUpperCase (addAnotherPerson) ;

invalidInput = true; //Resets the input

ValidateAddAnotherPerson (addAnotherPersonUpper); //Validates whether or not
the user response to the question "...more person to enter" is a valid response

if (Character.toUpperCase (addAnotherPerson) == 'Y') { //Checks whether input
is one of the valid options

invalidInput = false; //Assigns false to invalidInput indicating that user
input is wvalid
addAnotherPerson = 'Y'; // Converts lower case y to Upper case Y
}
if (Character.toUpperCase (addAnotherPerson) == 'N') { //Checks whether input

is one of the valid options

invalidInput = false; //Assigns false to invalidInput indicating that user
input is wvalid
addAnotherPerson = 'N'; //Converts lower case n to Upper case N
}
keyboard.nextLine(); //This fixes the nextLine common issue where the /n is

part of buffer

} while (invalidInput); //Keep looping when input is invalid (false)

CalculateDenominations (person) ;

DspMenu (person) ;

public static boolean ChkIsNewName (String chkUserName, int changeAmount, Change[] person)
{ //Method that validates whether or not name entered by the user is unique (true) or not
unique (false)

String personName = "None";

for (int 1 = 0; i < 15; i++) { //Loops through array containing many persons (object)
and checks whether name entered by user refers to an exisiting person

personName = person[i].GetName () ;

if (personName.equalsIgnoreCase (chkUserName)) { //The user-entered name of person
(chkUserName) refers to an exisiting name of person (personName). Ignores case sensitivity

person[i].AddAmountOfChange (changeAmount); //Adds the additional change amount
to the existing person

System.out.println ("Update exisiting person");

return false; //Assign false to the boolean method to indicate that the name
of the person is not unique/new

}

return true;

public static void ValidateAddAnotherPerson (char chkAddAnotherPerson) { //Method validates
whether or not another person is to be added

if ((chkAddAnotherPerson == 'Y') || (chkAddAnotherPerson == 'N')) { //
return;

} else {

System.out.println ("Error: invalid input"); //Displays error message when the
input is neither Y or N

}

public static void CalculateDenominations (Change[] person) { //Method that calculates the
denominations for each person in respect to the person's total change amount

for (int 1 = 0; i < 15; i++) { //Loop's through array containing many persons (object)
and calculate denominations for each person (object)

int remainingAmountOfChange = 0;
int numOfFiftyCents = 0;

int numOfTwentyCents = 0;

int numOfTenCents = 0;

int numOfFiveCents = 0;

remainingAmountOfChange = person[i].GetAmountOfChange () ;

while (remainingAmountOfChange >= 50) {
numOfFiftyCents += 1; //Give 1 more fifty cent coin to the person

remainingAmountOfChange -= 50;

while (remainingAmountOfChange >= 20) {
numOfTwentyCents += 1; //Give 1 more twenty cent coin to the person

remainingAmountOfChange -= 20;

while (remainingAmountOfChange >= 10) {
numOfTenCents += 1; //Give 1 more ten cent coin to the person

remainingAmountOfChange -= 10;

while (remainingAmountOfChange >= 5) {
numOfFiveCents += 1; //Give 1 more five cent coin to the person

remainingAmountOfChange -= 5;

person[i].SetNumOfFiftyCents (numOfFiftyCents); //Sets the number of coins given to
the person for each denomination

person[i].SetNumOfTwentyCents (numOfTwentyCents) ;
person[i].SetNumOfTenCents (numOfTenCents) ;

person[i].SetNumOfFiveCents (numOfFiveCents) ;

public static void DspMenu (Change[] person) { //Method that displays a menu to the client

int option = 0;

Scanner keyboard = new Scanner (System.in);

while (option != 5) { //Stops displaying the menu when the option entered is 5

System.out.println();

System.out.println("1. Enter a name and display change to be given for each
denomination") ;

System.out.println("2. Find the name(s) with the smallest amount and display
change to be given for each denomination");

System.out.println("3. Find the name(s) with the largest amount and display change
to be given for each denomination");

System.out.println("4. Calculate and display the total number of coins for each
denomination, and the sum of these totals");

System.out.println("5. Exit");

System.out.println ("Enter an option: ");

option = keyboard.nextInt();

switch (option) {
case 1:
SelectOptionl (person) ;
break;

case 2:

SelectOption?2 (person) ;
break;

case 3:
SelectOption3 (person) ;
break;

case 4:
SelectOptiond (person) ;
break;

case 5:
System.out.println ("Farewell! Exiting menu");
break;

default:

System.out.println("Invalid option!");

public static void SelectOptionl (Change[] person) { //Method that gets the client to enter
a name and display corresponding denominations for the person

String searchName;

String currentName;

Boolean nameNotFound = true;

Scanner keyboard = new Scanner (System.in);

System.out.println("--------—————————————— - ")

do {
System.out.println ("Enter a name: ");
searchName = keyboard.nextLine();
} while (searchName.isEmpty () && searchName != null); //Error checks for empty string

or null

for (int i = 0; (i < 15) && (nameNotFound); i++) { //Keep looping through array of
persons (object) and until the last object in the array or until a name is found

currentName = person[i].GetName () ;

if (searchName.equalsIgnoreCase (currentName)) { //Checks whether the entered name
is found in the array of persons (object). Ignores case sensitivity

DenominationsBreakdown (i, person);

nameNotFound = false; //Assigns false to the boolean to indicate that the name
is found

if (nameNotFound) { //When the entered name is NOT found in the array of persons
(object) an error message is displayed to the client

System.out.printf ("Name: %s", searchName) ;
System.out.println();
System.out.println ("Not Found");

System.out.println("--------——————-————— - ")

public static void SelectOption2 (Change[] person) { //Method that finds the name(s) with
the smallest change amount. This method will then display the corresponding denomination for
each name

int smallestNumLocation = 0;

int smallestChangeAmount = person[0].GetAmountOfChange(); //Assign an initial smallest
amount of change to compare with other change amounts

int changeAmount = 0;

for (int 1 = 0; i < 15; i++) { //Loop identifies the smallest change amount

changeAmount = person[i].GetAmountOfChange () ;

if ((changeAmount < smallestChangeAmount) && (changeAmount != 0)) { //This checks
whether the current smallestChangeAmount is still the smallest. The addition of change amount
not equal 0 is validation checking

smallestChangeAmount = changeAmount; // for a
default unset person (object). A default object is a person whom has not yet been
intilialised/set variables for. It must be ignored

}

System.out.println("--------—————————————— - ")

System.out.println ("The people(s) with the smallest change amount is");

for (int j = 0; j < 15; j++) { //This loop deals with multiple people having the
smallest change amount. Displays the resulting people with the smallest amount of change

changeAmount = person[j].GetAmountOfChange () ;

if (smallestChangeAmount == changeAmount) { //Displays the person(s) that has the
smallest change amount

smallestNumLocation = j;

DenominationsBreakdown (smallestNumLocation, person);

public static void SelectOption3(Change[] person) { //Method that finds the name(s) with
the largest change amount. This method will then display the corresponding denomination for
each name

int largestNumLocation = 0;

int largestChangeAmount = person[0].GetAmountOfChange(); //Assign an initial largest
amount of change to compare with other change amounts

int changeAmount = 0;

for (int 1 = 0; i < 15; i++) { //Loop identifies the largest change amount

changeAmount = person[i].GetAmountOfChange () ;

if (changeAmount > largestChangeAmount) { //This checks whether the current
largest ChangeAmount is still the largest.

largestChangeAmount = changeAmount; //Update the largest changeAmount when the
current one is no longer the largest

System.out.println("------------------——————"—"—"—"—"—"—~—~—~—~—~—~————————————————— ")

System.out.println ("The people(s) with the largest change amount is");

for (int j = 0; j < 15; j++) { //This loop deals with multiple people having the
largest change amount. Displays the resulting people with the largest amount of change

changeAmount = person[j].GetAmountOfChange () ;

if (largestChangeAmount == changeAmount) { //Displays the person(s) that has the
largest change amount

largestNumLocation = j;

DenominationsBreakdown (largestNumLocation, person);

public static void SelectOption4 (Change[] person) { //Method finds the total change amount
for all the people and total number of coins given for each denomination

int TotalFiftyCents = 0;
int TotalTwentyCents = 0;
int TotalTenCents = 0;
int TotalFiveCents = 0;

int TotalAmountOfChange = 0;

for (int i = 0; i < 15; i++) { //Loop works out the total number of coins given for
each denomination and the total change amount for all the people

int numOfFiftyCents = person[i].GetNumOfFiftyCents(); //Retrieve the denominations
for the person

int numOfTwentyCents = person[i].GetNumOfTwentyCents () ;
int numOfTenCents = person[i].GetNumOfTenCents () ;

int numOfFiveCents = person[i].GetNumOfFiveCents();

int amountOfChange = person[i].GetAmountOfChange(); //Retrieve the change amount
for the person

TotalFiftyCents += numOfFiftyCents; //Keeps a running total of the number of coins
given for each denominations for all people

TotalTwentyCents += numOfTwentyCents;
TotalTenCents += numOfTenCents;

TotalFiveCents += numOfFiveCents;

TotalAmountOfChange += amountOfChange;

System.out.println("——-——-—————————"——"—"——"—"—"——~ -~~~ ")
System.out.println("Total number of coins and sum of these total");
System.out.printf ("Total amount of change: %d", TotalAmountOfChange);
System.out.println();

DspDenominations (TotalFiftyCents, TotalTwentyCents, TotalTenCents, TotalFiveCents);
//Displays the total number of coins given for all people

public static void DenominationsBreakdown (int location, Change[] person) { //Method that
breakdowns the denominations for the person

String dspName;

int numOfFiftyCents = 0;
int numOfTwentyCents = 0;
int numOfTenCents = 0;
int numOfFiveCents = 0;

int dspChangeAmount = 0;

numOfFiftyCents = person[location].GetNumOfFiftyCents(); //Retrieve the denominations
for the person

numOfTwentyCents = person[location].GetNumOfTwentyCents () ;
numOfTenCents = person[location].GetNumOfTenCents() ;

numOfFiveCents = person[location].GetNumOfFiveCents () ;

dspChangeAmount = person[location].GetAmountOfChange (); //Retrieve the name of the

person

dspName = person[location].GetName () ;

System.out.println();

System.out.println("Customer: "); //Displays name of the person and their change
amount

System.out.printf ("%s %d cents", dspName, dspChangeAmount) ;

System.out.println();

DspDenominations (numOfFiftyCents, numOfTwentyCents, numOfTenCents, numOfFiveCents) ;
//Displays the total number of coins given for each denomination for the person

public static void DspDenominations (int dspNumOfFiftyCents, int dspNumOfTwentyCents, int
dspNumOfTenCents, int dspNumOfFiveCents) { //Method displays the total number of coins given
for each denomination

System.out.println();

System.out.print ("Change: ");

if (dspNumOfFiftyCents != 0) {
System.out.println();

System.out.printf ("50 cents: %d", dspNumOfFiftyCents); //Does not display the
following when there are 0 fifty cent coins given to people

if (dspNumOfTwentyCents != 0) {
System.out.println() ;

System.out.printf ("20 cents: %d", dspNumOfTwentyCents); //Does not display the
following when there are 0 fifty cent coins given to people

if (dspNumOfTenCents != 0) {

System.out.println();

System.out.printf ("10 cents: %d", dspNumOfTenCents); //Does not display the
following when there are 0 fifty cent coins given to people

if (dspNumOfFiveCents != 0) {
System.out.println() ;

System.out.printf ("5 cents: %d", dspNumOfFiveCents); //Does not display the
following when there are 0 fifty cent coins given to people

}
System.out.println();

System.out.println("---—----—————-—-—— oo ")

public static void StudentInfo() {

System.out.println("Name: Jin Cherng Chong ");

System.out.println ("Student number: 33170193 ");
System.out.println ("Mode of enrolment: Internal ");

System.out.println ("Tutorial attendance day and time: Thursday 3:30pm");

System.out.println("-----—---——————————- - ")

public static void HardcodeData () {

Change[] hardcodePerson = new Change[l5]; //Creates an array of new objects. Each
object can be thought of as a unique person

hardcodePerson[0] = new Change ("Jane", 30); //NOTE: The new Change() creates a brand
new object.

hardcodePerson[l] = new Change ("John", 50); //NOTE: The hard coded data treats every
new object as a new person. Thus creating two object named Jane will result in two people
named Jane

hardcodePerson([2] = new Change ("Fred", 95);
hardcodePerson[3] = new Change ("Tom", 25);
hardcodePerson[4] = new Change ("Blitz", 45);

hardcodePerson[5] = new Change ("Luke", 30);

hardcodePerson[6] = new Change ("Fair", 30);

hardcodePerson[7] = new Change ("Jane", 30);
hardcodePerson[8] = new Change ("george", 10);
hardcodePerson[9] = new Change ("Lucas", 75);
hardcodePerson[10] = new Change ("Tim", 5);
hardcodePerson[11l] = new Change ("Felix", 86);
hardcodePerson[12] = new Change ("Racheal", 5);
hardcodePerson[13] = new Change ("Ryan", 10);
hardcodePerson[14] = new Change ("May", 40);

CalculateDenominations (hardcodePerson) ;

DspMenu (hardcodePerson) ;

Java source code for Change class(Change.java)-

/*

* To change this license header,

* To change this template file,

* and open

*/

choose License Headers in
choose Tools | Templates

the template in the editor.

package change;

import java.

util.Scanner;

public class Change {

private
private
private
private
private

private

String name;
int amountOfChange;
int numOfFiftyCents;
int numOfTwentyCents;
int numOfTenCents;

int numOfFiveCents;

public Change () {

name = "None";
amountOfChange = 0;
numOfFiftyCents = 0;
numOfTwentyCents = 0O;
numOfTenCents = 0;
numOfFiveCents = 0;

Project Properties.

public Change (String initialName, int initialAmountOfChange) {

name = initialName;

amountOfChange = initialAmountOfChange;
numOfFiftyCents = 0;

numOfTwentyCents = 0;

numOfTenCents = 0;

numOfFiveCents = 0;

public Change (String initialName) {

name = initialName;;
amountOfChange = 0;
numOfFiftyCents = 0;
numOfTwentyCents = 0;
numOfTenCents = 0;

numOfFiveCents = 0;

public Change (int initialAmountOfChange) {

name = "None";

amountOfChange = initialAmountOfChange;
numOfFiftyCents = 0;

numOfTwentyCents = 0;

numOfTenCents = 0;

numOfFiveCents = 0;

/**
* Pre-condition: name is a string that is neither non null or empty. Also

* newAmountOfChange is an integer that represents the amount of money given by the person
(called change amount because it will be exchanged for coins). It must be in range and
multiple of 5

*

* Post-condition: assigns the newName parameter string to the current name instance
variable or displays an error message

*

*/

public void SetChange (String newName, int newAmountOfChange) {
SetName (newName) ;
SetAmountOfChange (newAmountOfChange) ;
numOfFiftyCents = 0;
numOfTwentyCents = 0;
numOfTenCents = 0;

numOfFiveCents = 0;

/**
* Pre-condition: name is a string that is neither non null or empty

* Post-condition: assigns the newName parameter string to the current name instance
variable or displays an error message

*

*/

public void SetName (String newName) {

if (!newName.isEmpty () && newName != null) { //Validates whether the name set by the
user is empty or null. An error will be outputed when either of those are true

name = newName;
} else {
System.out.println("Error: Invalid name"); //Output error message when string in

the parameter is empty or null

}

/**

* Pre-condition: newAmountOfChange is an integer that represents the amount of money
given by the person (called change amount because it will be exchanged for coins). It must be
in range and multiple of 5

* Post-condition: assigns the newAmountOfChange parameter integer to the current
amountOfChange instance variable or displays an error message

*

*/

public void SetAmountOfChange (int newAmountOfChange) {

Boolean inRange = ((newAmountOfChange >= 5) && (newAmountOfChange <= 95)); //Stores a
boolean variable containing the in range condition check

)

Boolean multipleOfFive = (newAmountOfChange % 5 == 0);

if ((inRange) && (multipleOfFive)) { //Checks whether the new AmountOfChange inputed by
the user is in rage and a multiple of five

amountOfChange = newAmountOfChange;
} else {

System.out.println("Incorrect coin value. Must be in range between 5 to 95 and
multiple of 5");

}

/**

* Pre-condition: newAmountOfChange is an integer that represents the amount of money
given by the person (called change amount because it will be exchanged for coins). It must be
in range and multiple of 5

* Post-condition: adds the newAmountOfChange integer value to the current existing
amountOfChange instance variable or displays an error message. Used when a user wants to add
more change to a persons set change amount

*

*/

public void AddAmountOfChange (int newAmountOfChange) {

Boolean inRange = ((newAmountOfChange >= 5) && (newAmountOfChange <= 95)); //Stores a
boolean variable containing the in range condition check

)

Boolean multipleOfFive = (newAmountOfChange % 5 == 0);

if ((inRange) && (multipleOfFive)) { //Checks whether the new AmountOfChange inputed by
the user is in rage and a multiple of five

amountOfChange += newAmountOfChange; //Add the newAmountOfChange to the
existing/set amountOfChange

} else {

System.out.println("Incorrect coin value. Must be in range between 5 to 95 and
multiple of 5");

}

/**

* Pre-condition: newNumOfFiftyCents is an integer that represents the number of fifty
cents a person has

* Post-condition: assigns newNumOfFiftyCents integer value to the current numOfFiftyCents
instance variable

*/

public void SetNumOfFiftyCents (int newNumOfFiftyCents) {

numOfFiftyCents = newNumOfFiftyCents;

/**

* Pre-condition: newNumOfTwentyCents is an integer that represents the number of twenty
cents a person has

* Post-condition: assigns newNumOfTwentyCents integer value to the current
numOfTwentyCents instance variable

*

*/

public void SetNumOfTwentyCents (int newNumOfTwentyCents) {

numOfTwentyCents = newNumOfTwentyCents;

/**

* Pre-condition: newNumOfTenCents is an integer that represents the number of ten cents a
person has

* Post-condition: assigns newNumOfTenCents integer value to the current numOfTenCents
instance variable

*/

public void SetNumOfTenCents (int newNumOfTenCents) {

numOfTenCents = newNumOfTenCents;

/**

* Pre-condition: newNumOfFiveCents is an integer that represents the number of five cents
a person has

* Post-condition: assigns newNumOfFiveCents integer value to the current numOfFiveCents
instance variable

*/

public void SetNumOfFiveCents (int newNumOfFiveCents) {

numOfFiveCents = newNumOfFiveCents;

/**
* Post-condition: returns the instance variable name as a string
*/

public String GetName () {

return name;
}
/**
* Post-condition: returns the instance variable amountOfChange as an integer
*/

public int GetAmountOfChange () {

return amountOfChange;
}
/**
* Post-condition: returns the instance variable numOfFiftyCents as an integer

*/

public int GetNumOfFiftyCents() {
return numOfFiftyCents;
}
/**
* Post-condition: returns the instance variable numOfTwentyCents as an integer
*/
public int GetNumOfTwentyCents () {
return numOfTwentyCents;
}
/**
* Post-condition: returns the instance variable numOfTenCents as an integer
*/
public int GetNumOfTenCents () {
return numOfTenCents;
}
/**
* Post-condition: returns the instance variable numOfFiveCents as an integer
*/
public int GetNumOfFiveCents () {

return numOfFiveCents;

/**

* Pre-condition: object must be instantiated

* Post-condition: displays the initial (unset) instance variables of the object

*/

public void WriteInitialRecord() {

System.out.printf ("Name: %s \n", name);

System.out.printf ("Change amount: %d \n \n", amountOfChange) ;

System.out.println ("Change: ");

System.out.printf ("50 cents: %d \n", numOfFiftyCents);

System.out.printf ("20 cents: %d \n", numOfTwentyCents) ;
System.out.printf ("10 cents: %d \n", numOfTenCents) ;

System.out.printf ("5 cents: %d \n", numOfFiveCents) ;

